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should be subject to additional constraints beyond standard QF T
consistency ones - Swampland Program [Vafa ‘O8]

* Globally consistent compactifications of String Theory -
automatically include quantum gravity & constraints
emerge due to geometry of compactified space -

Does String Theory realize all consistent theories of
quantum gravity [String Universality]?

* Focus on finding physical conditions, reflecting geometric
constraints of consistent quantum gravity
(without reference to String Theory)
Long history: [...Kumar, Taylor '09; Adams, DeWolfe, Taylor '10;...
Garcla-Etxebarria, Hayashi, Ohmori, Tachikawa, Yonekura ’17;
Kim, Tarazi, Vafa ’19; M.C., Dierigl, Lin, Zhang '20; Montero,Vafa '20;
Hamada, Vafa ’@1; Tarazi, Vafa '21;...]
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Highlight

« (Gauge symmetry topology for
N =1 Supergravity in 8D -
gauging of one-form symmetries

* Top-down classification via string junctions -
all 8D (& 9D) N=1 string vacua

Guiding principles
»  Geometry: primarily F-theory compactification
* Physics: global symmetries, including higher-form ones,

gauged or broken in consistent quantum gravity

[No Global Symmetry Hypothesis]
...[Harlow, Ooguri ’18]
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Key features of F-theory compactification

* F-theory, a powerful framework that geometrizes t =axio-dilaton
as a modular parameter of T2 (SL(2,2) duality of Type IIB string)

« Compactification on
singular, elliptically fibered
Calabi-Yau fewfolds

- 7-brane non-Abelian gauge symmetries G, encoded in types of
singular T2 fibration (ADE singularities)

T2 (elliptic curve) carries arithmetic structure: Mordell-Weil group of
rational points - U(1)’s [Morrison,Park’12;
M.C.,Klevers,Piragua’l 3; Borchmann, Mayrhofer,Palti,Weigand’13;...]

torsional points > gauge group topology Z-=2 G/Z
[Aspinwall,Morrison’98; Mayrhofer,Morrison,Till, Weigand’14; M.C.,Lin’1"7
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toric geometry techniques
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[M.C., Halverson, Lin, Liu, Tian ’'19, PRL]
Quadrillion Standard Models (QSMs)
with 3-chiral families & gauge coupling unification

[gauge divisors — in class of anti-canonical divisor K]

c.f., Wati Taylor’s talk
Current efforts: determination the exact matter spectra

(including # of Higgs pairs) [Bies, M.C., Donagi,(Liu), Ong '21,’22]
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Matter spectra specified by root bundles (Ktracnoi|_ )
on matter curves:

Identified O(10"") F-theory QSM geometries without
vector-like matter exotics in the representations of Q, , gr , er

by studying [Caporaso,Casagrande, Cornalba '04]
limit root bundles on nodal matter curves (deformed matter curves)

« Develop algorithm to determine h° for all limit root
bundles (w/ chirality: y = h® — h' =3)

« For A, polytope (10" triangulations) 99.995% of root-bundles
exactly h® =3 - -no vector-like exotics

 Statistical analysis for other polytopes =2 w/ h®=3
by far most prevalent

- Study of Higgs nodal curves [Bies, M.C., Liu, work in progress]
No time, c.f. Martin Bies’ talk
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» Solutions to Z; k% (n;— 1)/(2n) € Z , subjectto 2, (n,— 1) =18
[Montero, Vafa '20]
limited. E.g., G/Z,w/ £ > 8 no anomaly-free solution;

unique solutions £= 7: SU(T)3/Z,: £ = 8: [SU(8)2xSU(4)x SU(2))/Zs

» Also for other gauge groups & rank 10 and 2 theories.
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String Junctions & All Gauge Groups in 8D String Theory

String junctions between (p,q) 7-branes @ geometry of 2-cycles
[Gaberdiel,Zwiebach 97, DeWolfe,Zwiebach 98]

In perpendicular
2d space

\_/

String junctions w/ prongs©n s & roots of gauge algebra lattice
String junctions w/ externalﬁsymptotic) prongs & weights

[Magnetic " junctions” - 5-branes wrapping the same 2-cycles;
realizes ADE gauge algebras w/ weights = co-weights]

(CO-)Weights gy  MON-cOMPACt = 7(G) |
(co-)roots compact 2-cycles ]
- (magnetic) electric higher-form symmetries
[Morrison,Schafer-NamekiWillett '20,
Albertini,Del Zotto,Garcia-Etxebarria,Hosseini '20]
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Non-root junctions carry non-zero asymptotic (p,q)-charge
j = /liai + (l)(p’q) (/ll € Q)

“Fractionality” of A;,a; = w encodes charge under Z(G) -
equivalently captured by extended weights @, .,
which are fractional loop junctions. (,,)
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Also for all examples with U(1)’s
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Junctions on O7*
* O7* - does not split into (p,q) 7-branes(unlike O7-)

* Same monodromy as sp4g - stack, but w/ “non-trivial flux”

that “freezes” singularity in M-/F-theory
[Witten 97, de Boer et al 'O1, Tachikawa ’'15]

* Freezing - local: “replacing” one stack [two stacks]

with O7* yields theories of rank 10 [rank 2]
[Hamada, Vafa ’'21]

 Strings ending on O7* must have even p and g charges
[Imamura '99, Bergman,Gimon,Sugimoto '01]
[5-brane prongs of any integer (p,q)]
Derived, if configs. with one O7* are dual to CHL vacua

‘ Analogous constructions w/global topology
w/ one O/7* =2 all rank 10 vacua
w/ two O7* = all rank 2 vacua - first construction
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Junctions in 9D uplifts:
sharpens swampland distance conjecture

 Suitable infinite distance limits of F-theory in K3 moduli space
describe 9D N=1 theories of rank 17

[Lee, Lerche,Weigand '21]

 Junctions characterized by appearance of singularities
associated with affine algebras &,:

A"BC?  Xp g
Two series: X X
A8d.c0 — SU18—m—n D €m D ¢, = Qo4 = S 18_y—n D ¢, D ¢,
3300 = 90342k D &, = Qoy = 30342 D ¢y
[Maximal non-Abelian enhancement in D=9 heterotic vacua
[Font, Fraiman,Grana,Parra de Freitas ‘20] ]
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9D uplifts with one O7* - rank 9

* Characterized by " freezing” of one &4

* Maximal enhancements: Sujo_, D ¢, Or $0;g
[CHL: [Mikhailov '98; (Font), Fraiman, (Grana), Parra de Freitas '21]|

9D uplifts with two O/* = rank 1
» Freezing of two &g’ 88400 = 32 D e D &g = Gy, = SU(2)
* 9D, rank 1 has two disconnected moduli branches

[Aharony,Komargodski,Patir '07]
« Shown to be connected through D=8

All 9D string vacua are “emergent” from 8D ones!



Role of 1-form symmetry &
Mixed 1-form - gauge anomalies in D<8

8D [Font, Grafa ,Fraiman, Freitas '21] — heterotic
[M.C., Dierigl, Lin, Zhang '21, ’22] - string junctions
/D [M.C., Dierigl, Lin, Zhang '21] — F/M-theory duality
(torsional boundary G,)
* 6D [Apruzzi, Dierigl, Lin ’20] — excitations of BPS strings

5D [M.C., Dierigl, Lin, Zhang '21] — F/M-theory duality

(torsional boundary G,)
[Apruzzi, Bonetti, Garcia-Etxebarria, Hosseini, Schafer-Nameki '22]...



Role of 1-form symmetry &
Mixed 1-form - gauge anomalies in D<8

8D [Font, Grafa ,Fraiman, Freitas '21] — heterotic
[M.C., Dierigl, Lin, Zhang '21, ’22] - string junctions
/D [M.C., Dierigl, Lin, Zhang '21] — F/M-theory duality
(torsional boundary G,)
* 6D [Apruzzi, Dierigl, Lin ’20] — excitations of BPS strings

5D [M.C., Dierigl, Lin, Zhang '21] — F/M-theory duality

(torsional boundary G,)
[Apruzzi, Bonetti, Garcia-Etxebarria, Hosseini, Schafer-Nameki '22]...

* Mixed higher-form - gauge anomalies
have important implications also for 6D and 5D SCFTs
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« Geometry:
F-theory/Heterotic string/CHL/string junctions
Full 8D string theory landscape



Summary

* Physics:
Employing higher-form symmetries to formulate
anomaly condition for gauge group topology
Gauged 1-form symmetry in 8D

‘ perfect agreement

« Geometry:
F-theory/Heterotic string/CHL/string junctions
Full 8D string theory landscape
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Future Directions
Focused on 8D N=1 and role of 1-form gauge

symmetry 1

* Higher-group structures in D<6

O-form & 1-form symmetries - 2-group structures
[hot topic, a number of talks at SP’22]

- Within SCFT’s - geometric origin of higher group structures
[M. C., Heckman, Hubner, Torres '22]
[Del Zotto, Etxebarria, Schafer-Nameki ‘2]

- Their role in in quantum gravity -

string theory on compact spaces
[M. C., Heckman, Hibner, Torres to appear]



J hank you!



